133 research outputs found

    Brain morphology predicts individual sensitivity to pain: a multicenter machine learning approach

    Get PDF
    ABSTRACT: Sensitivity to pain shows a remarkable interindividual variance that has been reported to both forecast and accompany various clinical pain conditions. Although pain thresholds have been reported to be associated to brain morphology, it is still unclear how well these findings replicate in independent data and whether they are powerful enough to provide reliable pain sensitivity predictions on the individual level. In this study, we constructed a predictive model of pain sensitivity (as measured with pain thresholds) using structural magnetic resonance imaging-based cortical thickness data from a multicentre data set (3 centres and 131 healthy participants). Cross-validated estimates revealed a statistically significant and clinically relevant predictive performance (Pearson r = 0.36, P < 0.0002, R2 = 0.13). The predictions were found to be specific to physical pain thresholds and not biased towards potential confounding effects (eg, anxiety, stress, depression, centre effects, and pain self-evaluation). Analysis of model coefficients suggests that the most robust cortical thickness predictors of pain sensitivity are the right rostral anterior cingulate gyrus, left parahippocampal gyrus, and left temporal pole. Cortical thickness in these regions was negatively correlated to pain sensitivity. Our results can be considered as a proof-of-concept for the capacity of brain morphology to predict pain sensitivity, paving the way towards future multimodal brain-based biomarkers of pain

    The Contribution of Various MRI Parameters to Clinical and Cognitive Disability in Multiple Sclerosis

    Get PDF
    Next to the disseminated clinical symptoms, cognitive dysfunctions are common features of multiple sclerosis (MS). Over the recent years several different MRI measures became available representing the various features of the pathology, but the contribution to various clinical and cognitive functions is not yet fully understood. In this multiparametric MRI study we set out to identify the set of parameters that best predict the clinical and cognitive disability in MS. High resolution T1 weighted structural and high angular resolution diffusion MRI images were measured in 53 patients with relapsing remitting MS and 53 healthy controls. Clinical disability was inflicted by EDSS and cognitive functions were evaluated with the BICAMS tests. The contribution of lesion load, partial brain, white matter, gray matter and subcortical volumes as well as the diffusion parameters in the area of the lesions and the normal appearing white matter were examined by model free, partial least square (PLS) approach. Significance of the predictors was tested with Variable Importance in the Projection (VIP) score and 1 was used for threshold of significance. The PLS analysis indicated that the axial diffusivity of the NAWM contributed the most to the clinical disability (VIP score: 1.979). For the visuo-spatial working memory the most critical contributor was the size of the bilateral hippocampi (VIP scores: 1.183 and 1.2 left and right respectively). For the verbal memory the best predictors were the size of the right hippocampus (VIP score: 1.972), lesion load (VIP score: 1.274) and the partial brain volume (VIP score: 1.119). In case of the information processing speed the most significant contribution was from the diffusion parameters (fractional anisotropy, mean and radial diffusivity, VIP scores: 1.615, 1.321 respectively) of the normal appearing white matter. Our results indicate that various MRI measurable factors of MS pathology contribute differently to clinical and cognitive disability. These results point out the importance of the volumetry of the subcortical structures and the diffusion measures of the white matter in understanding the disability progression

    Periventricular magnetisation transfer abnormalities in early multiple sclerosis

    Get PDF
    OBJECTIVE: Recent studies suggested that CSF-mediated factors contribute to periventricular (PV) T2-hyperintense lesion formation in multiple sclerosis (MS) and this in turn correlates with cortical damage. We thus investigated if such PV-changes are observable microstructurally in early-MS and if they correlate with cortical damage. METHODS: We assessed the magnetisation transfer ratio (MTR) in PV normal-appearing white matter (NAWM) and in MS lesions in 44 patients with a clinically isolated syndrome (CIS) suggestive of MS and 73 relapsing-remitting MS (RRMS) patients. Band-wise MTR values were related to cortical mean thickness (CMT) and compared with 49 healthy controls (HCs). For each band, MTR changes were assessed relative to the average MTR values of all HCs. RESULTS: Relative to HCs, PV-MTR was significantly reduced up to 2.63% in CIS and 5.37% in RRMS (p<0.0001). The MTR decreased towards the lateral ventricles with 0.18%/mm in CIS and 0.31%/mm in RRMS patients, relative to HCs. In RRMS, MTR-values adjacent to the ventricle and in PV-lesions correlated positively with CMT and negatively with EDSS. CONCLUSION: PV-MTR gradients are present from the earliest stage of MS, consistent with more pronounced microstructural WM-damage closer to the ventricles. The positive association between reduced CMT and lower MTR in PV-NAWM suggests a common pathophysiologic mechanism. Together, these findings indicate the potential use of multimodal MRI as refined marker for MS-related tissue changes

    Connection between microstructural alterations detected by diffusion MRI and cognitive dysfunction in MS: A model-free analysis approach

    Get PDF
    Cognitive decline is a prominent symptom of MS. Clear connection between cognitive status and white matter microstructural changes has not been unequivocally observed to date.To characterise the relationship between white matter microstructure and cognitive performance a partial least squares (PLS) approach was used.53 RR MS patients' T1 and DTI images and BICAMS subtests were used in our analysis. Standard FSL pipeline was used to obtain diffusion parameters. A PLS approach was applied to reveal the diffusion parameter patterns responsible for the cognitive dysfunction.The first latent variable (LV) was mainly associated with demyelination, while the second and third explained axonal damage. While the first two LV represented mainly Brief Visuospatial Memory Test (BVMT) and Single Digit Modality Test (SDMT), the third LV depicted diffusion alterations mainly the verbal subtest. The first LVs spatial map showed demyelination in the corpus callosum. The second LVs spatial map showed the diffusion alterations in the thalamus. The third LV depicted diffusion alterations in the putative left superior longitudinal fascicle.Visual memory demanding tasks versus language functions depend on distinct patterns of diffusion parameters and the spatial organisation. Axial diffusivity alterations, a putative marker of irreversible axonal loss explained around 20% of variability in the cognitive functions

    Modulating Visuomotor Sequence Learning by Repetitive Transcranial Magnetic Stimulation: What Do We Know So Far?

    Get PDF
    Predictive processes and numerous cognitive, motor, and social skills depend heavily on sequence learning. The visuomotor Serial Reaction Time Task (SRTT) can measure this fundamental cognitive process. To comprehend the neural underpinnings of the SRTT, non-invasive brain stimulation stands out as one of the most effective methodologies. Nevertheless, a systematic list of considerations for the design of such interventional studies is currently lacking. To address this gap, this review aimed to investigate whether repetitive transcranial magnetic stimulation (rTMS) is a viable method of modulating visuomotor sequence learning and to identify the factors that mediate its efficacy. We systematically analyzed the eligible records (n = 17) that attempted to modulate the performance of the SRTT with rTMS. The purpose of the analysis was to determine how the following factors affected SRTT performance: (1) stimulated brain regions, (2) rTMS protocols, (3) stimulated hemisphere, (4) timing of the stimulation, (5) SRTT sequence properties, and (6) other methodological features. The primary motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC) were found to be the most promising stimulation targets. Low-frequency protocols over M1 usually weaken performance, but the results are less consistent for the DLPFC. This review provides a comprehensive discussion about the behavioral effects of six factors that are crucial in designing future studies to modulate sequence learning with rTMS. Future studies may preferentially and synergistically combine functional neuroimaging with rTMS to adequately link the rTMS-induced network effects with behavioral findings, which are crucial to develop a unified cognitive model of visuomotor sequence learning

    The safety and efficacy of fingolimod: Real-world data from a long-term, non-interventional study on the treatment of RRMS patients spanning up to 5 years from Hungary

    Get PDF
    Fingolimod was approved and reimbursed by the healthcare provider in Hungary for the treatment of highly active relapsing-remitting multiple sclerosis (RRMS) in 2012. The present study aimed to assess the effectiveness, safety profile, and persistence to fingolimod in a real-life setting in Hungary in RRMS patients who were either therapy naïve before enrollment or have changed to fingolimod from another disease-modifying therapy (DMT) for any reason.This cross-sectional, observational study with prospective data collection was performed nationwide at 21 sites across Hungary. To avoid selection bias, sites were asked to document eligible patients in consecutive chronological order. Demographic, clinical, safety and efficacy data were analysed for up to 5 years from 570 consenting adult patients with RRMS who had received treatment with fingolimod for at least one year.69.6% of patients remained free from relapses for the whole study duration; in the first year, 85.1% of patients did not experience a relapse, which rose to 94.6% seen in the 5th year. Compared to baseline at study end, 28.2% had higher, and 9.1% had lower, meanwhile, 62.7% of the patients had stable EDSS scores. Overall, the annualized relapse rate decreased from 0.804 observed at baseline to 0.185, 0.149, 0.122, 0.091, and 0.097 (77.0%, 82.1%, 85.2%, 89.7%, and 89.0% relative reduction, respectively) after 1, 2, 3, 4, and 5 years of treatment. The greatest reduction rate was seen in the group of therapy naïve patients. Treatment persistence on fingolimod after 60 months was 73.4%.In this nationwide Hungarian cohort, most patients under fingolimod treatment were free from relapses and disability progression. In addition, fingolimod has proven to be a well-tolerated DMT that has sustained its manageable safety profile, high efficacy, and positive benefit/risk ratio for up to 5 years in a real-life setting

    Emerging Biomarkers of Multiple Sclerosis in the Bloodand the CSF : A Focus on Neurofilamentsand Therapeutic Considerations

    Get PDF
    Multiple Sclerosis (MS) is the most common immune-mediated chronic neurodegenerative disease of the central nervous system (CNS) affecting young people. This is due to the permanent disability, cognitive impairment, and the enormous detrimental impact MS can exert on a patient's health-related quality of life. It is of great importance to recognise it in time and commence adequate treatment at an early stage. The currently used disease-modifying therapies (DMT) aim to reduce disease activity and thus halt disability development, which in current clinical practice are monitored by clinical and imaging parameters but not by biomarkers found in blood and/or the cerebrospinal fluid (CSF). Both clinical and radiological measures routinely used to monitor disease activity lack information on the fundamental pathophysiological features and mechanisms of MS. Furthermore, they lag behind the disease process itself. By the time a clinical relapse becomes evident or a new lesion appears on the MRI scan, potentially irreversible damage has already occurred in the CNS. In recent years, several biomarkers that previously have been linked to other neurological and immunological diseases have received increased attention in MS. Additionally, other novel, potential biomarkers with prognostic and diagnostic properties have been detected in the CSF and blood of MS patients.In this review, we summarise the most up-to-date knowledge and research conducted on the already known and most promising new biomarker candidates found in the CSF and blood of MS patients.the current diagnostic criteria of MS relies on three pillars: MRI imaging, clinical events, and the presence of oligoclonal bands in the CSF (which was reinstated into the diagnostic criteria by the most recent revision). Even though the most recent McDonald criteria made the diagnosis of MS faster than the prior iteration, it is still not an infallible diagnostic toolset, especially at the very early stage of the clinically isolated syndrome. Together with the gold standard MRI and clinical measures, ancillary blood and CSF biomarkers may not just improve diagnostic accuracy and speed but very well may become agents to monitor therapeutic efficacy and make even more personalised treatment in MS a reality in the near future. The major disadvantage of these biomarkers in the past has been the need to obtain CSF to measure them. However, the recent advances in extremely sensitive immunoassays made their measurement possible from peripheral blood even when present only in minuscule concentrations. This should mark the beginning of a new biomarker research and utilisation era in MS

    Temporal instability of salience network activity in migraine with aura.

    Get PDF
    This study aims to investigate whether intra-network dynamic functional connectivity and causal interactions of the salience network is altered in the interictal term of migraine. 32 healthy controls, 37 migraineurs without aura and 20 migraineurs with aura were recruited. Participants underwent a T1-weighted scan and resting-state fMRI protocol inside a 1.5T MR scanner. We obtained average spatial maps of resting-state networks using group independent component analysis, which yielded subject-specific time series via a dual regression approach. Salience network ROIs (bilateral insulae and prefrontal cortices, dorsal anterior cingulate cortex) were obtained from the group average map via cluster-based thresholding. To describe intra-network connectivity, average and dynamic conditional correlation was calculated. Causal interactions between the default-mode, dorsal attention and salience network were characterised by spectral Granger's causality. Time-averaged correlation was lower between the right insula and prefrontal cortex in migraine without aura vs. with aura and healthy controls (p<0.038, p<0.037). Variance of dynamic conditional correlation was higher in migraine with aura vs. healthy controls and migraine with aura vs. without aura between the right insula and dorsal anterior cingulate cortex (p<0.011, p<0.026), and in migraine with aura vs. healthy controls between the dorsal anterior cingulate and left prefrontal cortex (p<0.021). Causality was weaker in the <0.05 Hz frequency range between the salience and dorsal attention networks in migraine with aura (p<0.032). Overall, migraineurs with aura exhibit more fluctuating connections in the salience network, which also affect network interactions, and could be connected to altered cortical excitability and increased sensory gain
    corecore